23=8x2+3^2=23-8x2+9

Simple and best practice solution for 23=8x2+3^2=23-8x2+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23=8x2+3^2=23-8x2+9 equation:



23=8x^2+3^2=23-8x^2+9
We move all terms to the left:
23-(8x^2+3^2)=0
We get rid of parentheses
-8x^2+23-3^2=0
We add all the numbers together, and all the variables
-8x^2+14=0
a = -8; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-8)·14
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*-8}=\frac{0-8\sqrt{7}}{-16} =-\frac{8\sqrt{7}}{-16} =-\frac{\sqrt{7}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*-8}=\frac{0+8\sqrt{7}}{-16} =\frac{8\sqrt{7}}{-16} =\frac{\sqrt{7}}{-2} $

See similar equations:

| 3(7-x)+1=0 | | 5x+3(6x+4)=150 | | -6-5(-7x-5)=8 | | 9x2+-42x-7=0 | | y+5/7=4/7 | | 2/9=72/x | | 11x-11x=-11 | | x+(73+27)=400 | | t^2-t+7=0 | | 7(4x-7)=28x-49 | | x^2+4x-108=0 | | 3(n-2+8=-83 | | -6x-11x=136 | | -10=-5+n | | 12a=-a | | 13+3(3x+8)=x-8 | | 9x^2+42x-7=0 | | -7b+8(1+8b)=236 | | n-4/3=-14/3 | | (x-2)/7=2+(3-x)/14 | | 5x+7-3x=2+×+4 | | 5x-(2+7x)=5(x-1)-2x | | 3x+2x-6=23 | | x-(73+27)=400 | | 4=2401^x-3 | | x+8/2=-6 | | A=5x20 | | 5(x-9)=2x-45 | | 4(w+3)=2(3w+6)-2w | | 9x+7=-3+5x+18 | | 2(x-7)=4(x+3) | | 3,9x+9=2,4x+12 |

Equations solver categories